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SPALLATION RESULTING FROM HIGH VELOCITY IMPACTS 

1. Introduction. A high-velocity impact generally creates a crater in a struc- 
ture, driving a strong shock wave into it. If the impacted structure, or target, is suffi- 
ciently thin, a puncture will result. If the target is relatively thick, the shock will 
rapidly decay into an elastic stress wave. When such a wave encounters a free surface, 
it is reflected, generally as a tensile wave, and its amplitude may be of sufficient magni- 
tude to produce fractures near the surface. Such fractures may appear as granular 
cracks, as rear surface bulges, or as a complete detachment of target material, creating 
a shrapnel effect. An example of each of these is shown in Figure I for copper, alumi- 
num, and steel targets. 

2. Mechanism of Spallation. The mechanism of fracture caused by the reflec- 
tion of a pressure wave from a free surface is illustrated in Figure 2. In this example, a 
sawtooth wave profile is assumed for both the simplicity of the calculations and be- 
cause it is probably a fair approximation of the average pressure wave. It is assumed 
that this pulse has a length X and a maximum amplitude of a , which is greater than 
the critical tensile strength a^ of the material. The resultant stress at any point during 
reflection is obtained by adding the stresses caused by the incident and reflected waves. 
At (a) the pulse has just reached the rear surface of the target. At (b), a short time 
later, some tensile stress is seen near the boundary. This tension increases in magni- 
tude until it reaches the critical fracture strength of the material a , as shown in (c). 
When the tensile stiess reaches this critical value, a fracture will be formed approxi- 

mately parallel to the rear surface. This fracture acts as a new free surface from which 
the tail of the pressure pulse is reflected. The tensile stress produced by the reflection 
increases as shown in (d) and may again reach the critical value, at which time a second 
fracture, shown at (e), will be formed parallel to the first. The tail of the pulse is now 

reflected from this newly formed free surface and, if of sufficient magnitude, will pro- 
duce additional fractures. 

3. Spall Location and Velocity. From the geometry of the pulse, it may be 
seen that if there is a fracture it will be located at a distance 

A =   ^  A /I) 
a„   2 ^'^ 

from the rear surface. In this case of the sawtooth pulse, if other fractures are formed, 
they also will be the distance A apart. 

A portion of the wave is trapped in the material between the rear surface and 
the first fracture. The free-surface velocity V^ can be found by equating the impulse of 



Figure 1. Fractures produced by reflected stress waves. 
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the trapped part of the wave to the momentum of that portion of the material: 

a   + (a   - a ) 
PAV^ =     "     Y      '^   t, (2) 

where p is the material density, and t is 2A/c, the time since the pulse front passed the 
point of fracture (c = pulse velocity). The portion of material between the fracture 
and the rear surface is known as the "spall," and the separation of the fractured 
material from the original material is called "spallation." 

The material velocity located in the spall is, therefore: 

2a   -a 
Y  =   -^ e . (3) 

* pc 

The initial velocity of the spall center can be approximated by this material velocity 
and will be referred to as the spall velocity. 

Equating the impulse of the portion of the pulse trapped between the first 
and second fractures to its momentum gives the velocity of the second spall: 

(a   -o ) + (o   - 2a ) 

^2 2 "' 

2a   -3a 
=   ~ " . (4) • pc 

If the pulse amplitude is sufficiently great to produce a third fracture, the 
velocity of the material between the second and third fractures will be: 

2a   -5a 
Vs3 - —  ■ <5) " pc 

The maximum possible number of spalls n will be a /a . 

The velocity of any spaU can be given by the relation: 

2a   -(2n- I) a 

^ pc 

Next, a more general pulse having a trapezoidal profile as shown in Figure 3, 
Part A, is considered.   Since the rise time is usually less than the decay time, only the 
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Figure 3.  Spall location and velocity. 



case when a < (X-a-b) will be considered. Also, only the first fracture causes signifi- 

cant spallation and the maximum material velocities; the possible additional fractures 
will not be considered. 

From the geometry of this pulse, the fracture distance from the rear surface 
is found to be: 

(X^)a.^l (7) 

2       "„       2 

Equating the impulse for that portion of the pulse between the fracture and 
the surface to the material momentum gives: 

^  ^   K   ^    (2A-b)(2a„-a^) 

^      Ape 2Apc 

2a   - o ho c + 
pc 2Apc 

(8) 

These relations can be apphed to any trapezoidal or triangular pulse as long 
as the rise time is less than the decay time. For example, the fracture location and 
material velocity for the sawtooth pulse previously considered could have been found 

by equations (7) and (8) when a = b = 0. 

Equations for the spall thickness A and velocity V for various trapezoidal 

(and triangular) pulse profiles are also shown in Figure 3. From these relations, the 
following conclusions can be drawn: 

a. If the pulse profile can be approximated by a triangle, neither the rise 
time a/c, nor the pulse length X, nor the spall thickness A has any effect on the material 
velocity. The material characteristic impedance pc, the pulse amplitude a , and the 
material resistance to tensile stresses o   determine the spall velocity. 

b. The spall thickness produced by a triangular pulse is affected by the 
pulse length and rise time as well as by the ratio of critical strength to pulse amplitude. 

c.      If the maximum pulse amplitude a    is exerted for a period of time 
b/c, both spall thickness A and velocity V . will be affected. The thickness of the spall 

will be increased by   I 1 —^ j   —   , and its velocity will be increased by 
2Apc 

d.     An increase in the rise time of either a triangular or trapezoidal pulse 



decreases the spall thickness hy the amount of 
a a c 

2V 

e. In the case of a step function or rectangular pulse, the spall thickness 
will simply be X/2, and the material velocity will be 2a /pc. Neither the spall location 
nor velocity depends upon the material strength as long as a > a . This is the rela- 
tion generally used to determine the free-surface velocity, but it applies only when this 
pulse shape is assumed. 

Another waveform will be considered before numerical values are calculated. 

The decaying exponential pulse p - p^e'"*, where p^ is the initial pressure pulse and 
a is the decay constant, often has been used to represent the wave resulting from im- 
pact. It can be shown that the spall thickness resulting from the reflection of this wave 
from a free surface is: 

( 

o 

A=-|-«„    1.^]. (9) 

The material velocity is given by the relations, 

-2 a A 
a     V e   «    ;_ 1 

V, = ^A_ L_ , (10) 
/Sap 

-2a 

pc £n (1 - ^ 
a o 

poA 

and , (11) 

(12) 

A comparison of the spall velocity resulting from a triangular pulse as given 
by equation (3), 

2a   -a 
V    =        °      " 

^ pc 

and that caused by an exponential pulse as given by equation (11), 

2a 

pc Cn f 1 - ^ 

shows that both involve the same variables: p, c, a , and a . 
'^'    '    c' o 



4.     Numerical Examples.  In order to determine the spallation of armor steel the 
following material properties are assumed: 

a^    = 38kb = 5.51 X 10^ psi 

p      = 7.33 X 10» lb(Msec)2/in'* 

c       = 0.234 in/jusec 

Material velocities resulting from both a triangular and an exponential pulse 
have been com[)uted. Both sets of values are given in the table. These data are shown 
in graphical form in Figure 4. Except for the higher oja^ ratios, there is little differ- 
ence between the two. 

Comparison of Material Velocities Resulting from Triangular 

and Exponential Pressure Pulses 

^o V. (ft/sec) Ratio of Velocities 

<^c/^o (10)5 psi kb Triangular Exponential (Exp./Tri.) 

0.2 27.5 190.0 2,404 2,400 0.998 
0.3 18.4 126.7 1,520 1,501 0.988 
0.4 13.8 95.0 1,073 1,048 0.977 
0.5 11.0 76.0 801 772 0.964 
0.6 9.18 63.3 624 584 0.936 
0.7 7.87 54.3 497 445 0.895 
0.8 6.89 47.5 402 333 0.828 
0.9 6.12 42.2 327 233 0.713 
0.95 5.80 40.0 296 179 0.605 

Although there is little difference between the spall velocities resulting from 

the triangular and the exponential stress waves, there are large differences in the spall 
thickness resulting from the two. In both cases, the spall thickness A is a function of 
a la . In the case of a triangular pulse, its length X is an important parameter; where- 
as, the ratio of pulse velocity to the decay constant c/a is significant in the case of the 
exponential pulse. The dependence of the spall thickness upon the decay constant is 
shown in Figure 5. These relations are linear in the case of triangular pulses of various 
lengths. 

The examples that have been given for very simple pulse forms are, of 
course, not too realistic, but they do enable one to determine the parameters that 

affect the spallation of a target. 
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A better representation of actual stress waves moving through a semi-infinite 
target is given in Figure 6. These are spherical stress waves resulting from an initial 
pressure pulse described by the relation: 

Po = (lO)'* [exp (-O.OOlt) - exp (-O.OlOt)]. 

These are relative values only. 

Figures 7 and 8 show these waves as they are reflected from a target having 
a thickness of 5 units. Figure 8 shows the development of the tensile stresses better 
since they were computed and plotted for smaller units of time. It should be noted 
that the reflected tensile wave combines with the tensile tail of the pressure pulse pro- 
ducing a tensile stress that may be of greater magnitude than the amphtude of the 
pressure wave. The maximum tensile stresses at various times and at different dis- 
tances from the axis of symmetry are shown in Figures 9 and 10. From these curves, 
the extent of probable fracture for various values of a la can be determined as shown 

in Figure 11. The solid lines show the fracture locations in materials such as steel or 
aluminum where a simple crack would form. The dotted lines enclose the areas where 
the stress exceeded the critical tensile strength and would be the extent of damage in 

materials such as Lucite or Plexiglas. The curve on this figure is a plot of spall thick- 
ness on the axis as a function of a la and is seen to be similar to those shown on 
Figure 5. Contours showing the maximum principal, minium principal, and maximum 

shear stresses are given in Figures 12, 13, 14, 15, 16, and 17. The reflected transverse, 
or shear, waves as well as the reflected longitudinal waves were taken into account in 
the computation of these stresses. , 

5. Experimental Determination of Free-Surface Velocity. Figure 18 shows the 
deformation of the rear surface of a 1.5-inch aluminum target resulting from a 0.3- by 
0.3-inch Lexan projectile impact having a velocity of 24,000 ft/s. The photographs 

also show minute particles being knocked from the rear surface. The surface and 

particle displacements at the center of the spaU are shown in Figure 19. The slope of 

the surface-displacement curve represents the free-surface velocity. The slope of the 
particle-displacement curve, which is a straight line, gives the initial surface velocity 
more accurately than can be determined from the slope of the target surface curve. 
The initial velocity of the spall center was 1,120 ft/s. The surface velocities at various 
distances from the center are shown on Figure 20. This would be an excellent method 
for determining the surface velocity of armor steel for Vcirious impact conditions. 

The reason for the erratic motion of the target surface is not known. Figure 
21 shows this target after being sectioned and polished. It can be seen that multiple 

fractures were formed. It may be that the formation and movement of these addi- 
tional spalls caused the movement of the rear surface after it had come to rest. It is 
difficult, however, to reconcile the times involved. 

11 
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Figure 18.  Deformation of rear surface. 
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f'igure 21. Front surface cratering and rear surface fractures. 
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6. Conclusion. It is apparent that spall thickness and velocity depend upon the 
material properties and upon the pulse profile, or waveform, as well as upon the pulse 
amplitude. These can be controlled to a large extent by the projectile material and 
dimensions as well as by its velocity. 

The question arises as to the optimum thickness of the spall. If the fracture 
is near the target surface, the material will be detached very easily, but the kinetic 
energy of the fragments will be small. A thicker spaU would result in greater kinetic 
energy if it became detached and if a large amount of work was not required to break 
such a spall loose from the target. 

It is obvious that much more work, both theoretical and experimental, 
needs to be done before the spaUation process can be understood to the extent of 
enabling one to design projectiles that will result in predictable damage. 
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